HETEROGENEOUS CATALYTIC OXIDATION of PHENOL for WASTEWATER TREATMENT USING RUTHENIUM CATALYST

نویسندگان

  • Syaifullah Muhammad
  • Pradeep R. Shukla
  • Shaobin Wang
  • Moses O. Tadé
چکیده

Heterogeneous catalysts of ruthenium were prepared by impregnation on activated carbon and ZSM-5 and were used to degrade phenol in the presence of peroxymonosulphate (PMS). The ruthenium based catalysts were characterised by several techniques such as XRD, SEM, and N2 adsorption. It was found that Ru-AC is highly effective in heterogeneous activation of peroxymonosulphate to produce sulphate radicals resulting in higher reaction rate compared with Ru-ZSM5. Degradation efficiency of phenol follows the order of Ru-AC > Ru-ZSM5 at all reaction conditions due to higher surface area and pore volume of Ru-AC. Degradation efficiency of phenol could be achieved at 100% of phenol degradation and 70% of TOC removal in 1 hour. It was also found that phenol degradation is strongly influenced by amount of catalyst loading, phenol concentration, oxidant concentration and temperature. Kinetic study proved that the pseudo firts order kinetics would fit to phenol oxidation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fe (III) supported on resin as effective catalyst for the heterogeneous oxidation of phenol in aqueous solution.

FeIII supported on resin as an effective catalyst for oxidation was prepared and applied for the degradation of aqueous phenol. Phenol was selected as a model pollutant and the catalytic oxidation was carried out in a batch reactor using hydrogen peroxide as the oxidant. The influent factors on oxidation, such as catalyst dosage, H2O2 concentration, pH, and phenol concentration were examined by...

متن کامل

Efficient Removal of Diclofenac from Pharmaceutical Wastewater Using Impregnated Zeolite Catalyst in Heterogeneous Fenton Process

In this study, we report removal of Diclofenac (DCF) through heterogeneous Fenton process using Fe-ZSM-5 catalyst. The parent catalyst was prepared by hydrothermal technique. Fe species were introduced by wet impregnation. Characterization of the catalysts was carried out using XRD, FT-IR, FE-SEM, N2 adsorption-desorption, NH3-TPD, and acidimetric-alkalimetric titration. The bimetallic catalyst...

متن کامل

Influence of Operational Parameters and Kinetic Modelling of Catalytic Wet Air Oxidation of Phenol by Al/Zr Pillared Clay Catalyst

Single and mixed oxide Al/Zr-pillared clay (Al/Zr-PILC) catalysts were synthesized and tested for catalytic wet air oxidation (CWAO) of aqueous phenol solution under milder conditions, in a semi-batch reactor. The catalysts were synthesized from natural bentonite clay using ultrasonic treatment during the aging and intercalation steps and were characterized <...

متن کامل

Magnetic heterogeneous catalytic ozonation: a new removal method for phenol in industrial wastewater

In this study, a new strategy in catalytic ozonation removal method for degradation of phenol from industrial wastewater was investigated. Magnetic carbon nano composite as a novel catalyst was synthesized, characterized and then used in the catalytic ozonation process (COP) and compared with the single ozonation process (SOP). The influential parameters were all investigated. The results showe...

متن کامل

Influence of textural properties and iron content on the activated carbon performance for catalytic wet air oxidation of phenol

Catalytic Wet Oxidation is a promising treatment for wastewater containing refractory compounds, such as phenol. Activated carbon has demonstrated to perform as catalyst in wet oxidation, however it is not fully understood its role as catalyst. This study aims to clarify the effect of metal content, specifically iron and calcium, on the performance of a commercial activated carbon. Several modi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011